This shaft is out of the headstock from my Cholchester Master 2500 lathe. They call it the "second shaft". It is the only one that has a sliding gear assembly with a plain bearing that is not splined to its shaft. This is because it can run faster/slower than the shaft it sits on, depending on gear selection. This gear set is also the most heavily loaded one since it either drives the low speed or the high speed bull gear on the spindle.
This is the second shaft with the sliding compound gear
Here is the overview of the headstock. You can see the second shaft just above the spindle
This is the problem
The gear bushing has started to score the shaft. In particular the hardened bushing retaining rings.
These guys...
The one on the left is pretty much unscathed but is very close to also start digging into the shaft because the bushing is worn down. The right one shows clear evidence (the shiny inside surface) of it contacting and marring the shaft.
Here is why (i believe)...
The inside of the compound gear is lined with a bronze bush. It does have two oil grooves in it, but somehow it still managed to start chewing itself to bits. The side facing us engages the low speed bull gear => low speed, high torque, high load on one side of the gear. With possible poor fit from new and poor lubrication, this side started wearing down faster, eventually allowing the bushing retaining ring to make contact with the shaft, creating the groove seen on the shaft in the pic above.
The repair:
First new centers needed to be cut into the end of the shaft as the existing ones were not concentric with the bearing journals ( i have no idea why; the shaft was cylindrically ground at manufacture so i first assumed the centers would be good, but not so). I don't have a cylindrical grinder or a cylindrical grinding attachment for the surface grinder or T&C grinder big enough for a shaft this long. But i have a tool post grinder. So that's what i used to fix the shaft. Final dimension is not important in this case as i will be making the gear bushing ID match the shaft. Key requirements: cylindrical and no taper.
Here we see the shaft after the first pass. The areas most worn are clearly visible (dull coloured). This pass was also a taper verification pass. I had to move the tail stock just a tad to correct.
And the final product...
We finished with about 0.0002" taper over the 4.25" length. I ended up playing around with the tail stock lock tension (it moves the quill just a bit), to get there during the final passes.
No lathe dogs were used to drive the shaft. Just the friction on the center in the spindle and witness marks to confirm no slipping. The grinding passes were such light DOC (partly because it is such a small TPG), that it was not necessary. The live center in the tail stock has back to back spring washers to take up the expansion of turned parts. It has about 2 thou axial movement. I used about 1 thou of that as preload between the centers. Works great.
Overall i took off 0.0036" after the initial pass to clean up the shaft.
Next will be the removal of the old bushing in the gear and making the new one...
This is the second shaft with the sliding compound gear
Here is the overview of the headstock. You can see the second shaft just above the spindle
This is the problem
The gear bushing has started to score the shaft. In particular the hardened bushing retaining rings.
These guys...
The one on the left is pretty much unscathed but is very close to also start digging into the shaft because the bushing is worn down. The right one shows clear evidence (the shiny inside surface) of it contacting and marring the shaft.
Here is why (i believe)...
The inside of the compound gear is lined with a bronze bush. It does have two oil grooves in it, but somehow it still managed to start chewing itself to bits. The side facing us engages the low speed bull gear => low speed, high torque, high load on one side of the gear. With possible poor fit from new and poor lubrication, this side started wearing down faster, eventually allowing the bushing retaining ring to make contact with the shaft, creating the groove seen on the shaft in the pic above.
The repair:
First new centers needed to be cut into the end of the shaft as the existing ones were not concentric with the bearing journals ( i have no idea why; the shaft was cylindrically ground at manufacture so i first assumed the centers would be good, but not so). I don't have a cylindrical grinder or a cylindrical grinding attachment for the surface grinder or T&C grinder big enough for a shaft this long. But i have a tool post grinder. So that's what i used to fix the shaft. Final dimension is not important in this case as i will be making the gear bushing ID match the shaft. Key requirements: cylindrical and no taper.
Here we see the shaft after the first pass. The areas most worn are clearly visible (dull coloured). This pass was also a taper verification pass. I had to move the tail stock just a tad to correct.
And the final product...
We finished with about 0.0002" taper over the 4.25" length. I ended up playing around with the tail stock lock tension (it moves the quill just a bit), to get there during the final passes.
No lathe dogs were used to drive the shaft. Just the friction on the center in the spindle and witness marks to confirm no slipping. The grinding passes were such light DOC (partly because it is such a small TPG), that it was not necessary. The live center in the tail stock has back to back spring washers to take up the expansion of turned parts. It has about 2 thou axial movement. I used about 1 thou of that as preload between the centers. Works great.
Overall i took off 0.0036" after the initial pass to clean up the shaft.
Next will be the removal of the old bushing in the gear and making the new one...